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Lax Pair Representation for the KPIl Equation

The Cauchy problem for the KPI equation is given by

{(ut+6uux—|—uxxx)x =3uy, (1)
u(0,x,y) = u(x,y)
A Lax pair for the KPI is given by
Lp = ipy + Pux +upp = 0 2)
and
M¢:1Pt+4l/ﬂxxx+6m/)x+31/) [ux— i/xoo uydx/] =0 (3)

where the KPI equation is the compatibility condition for (2) and (3), i.e., (1)
can be written as Lax's equation for L and M,

Ly = i[L, M].

Samir Donmazov University of Kentucky



[e]e]e] Je]ele]e]e]e)

Integral Equations

Consider an accompanying equation of (2) is given by
— iy + P +up =0 (4)

Let y = e~ i(btky) i and v = e/ —K¥) ¢ Then, equations (2)
and (4) can be written as

Ly = ipy + pxx + 2ikpix +up =0 (5)
Lv = —ivy + vux — 2ikvy + uv =0 (6)
Taking the Fourier and inverse Fourier transforms of (5) and (6),
respectively,

iy — (P + 2k = —(2m) tax (7)

iUy + (P + 2kl =%V (8)
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Integral Equations (cont.)

Denote the solutions of (7) by

A0, yik) = 2m0() i) [ IO D)y (9)
ir(l,y; k) = 2m8(1) — i(27) 1/ e M2 =G ar(1,7) dy  (10)
y

y

A,y k):2m5(l)+i(27r)_1/ eI+ G 4 1% (1 ) dyp (11)

+o0-/

Note:

(1) The equations (9) and (10) have unique solutions if
U e LY(R?).

(2) On the other hand, existence of unique solutions to (11)
requires ||ul|1(g2y < 271 if (11) is solved iteratively.
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Scattering Data

Define
S(k, k+1) = 2/e (260G 5 37 (1,17; k) dyy (12)
S(k+1,k) 2/e 2K 5 57 (1 k) dy (13)
and

TE(k, k+1) = —i(2m) 2 (il)/ 205« (1 k) dyp (14)
FE(k+ 1, k) = i(2) "2 H(F]) /e 2K 7 4 5 (1, s k) dp - (15)
RE(k, k + 1) = i(2) "2 H(F/) /e (2K 4 75(1 k) dy (16)

RE(k+ 1, k) = —i(2m) 2 (i/)/ef"’ﬂk)’?u*u (k) dy - (17)
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Scattering Data (cont.)

Triangular factorization of / + S is given by
I+S=(+£RH (T (18)
It follows that
I+F=+THU-T)=(U+RNHUI-R") (19)
relates the analytical solutions u* through a nonlocal
Riemann-Hilbert problem

W=+ Ty (20)
where F, , denotes the integral operator with the kernel
F(k, 1)e=Rx=i(P=k*)y for fixed x, y.
Alternatively, (20) can be rewritten as
wt= =T (21)
wt = £ R (22)
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Inverse Problem (cont.)

Define the following integral operators for the nonlocal
Riemann-Hilbert problem

CTx,y = C+7:<,_y + C*7:<4,>y (23)
Cr, = C4R,, + C R}, (24)
where Cy : [2(R?) — L2(IR?) are Cauchy integral operators
defined by
1 dk’
Cyif k,/zi/ifk/,/ 25
(GOl =55 | k=0 KD (25)

One can show that u" are fundamental solutions of the
Riemann-Hilbert problems (21) and (22) if and only if they satisfy
the following equations, respectively

p=1+Cr (26)
‘ul’ = ]_ + CRX,y‘ur (27)
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Inverse Problem (cont.)

Let u be an undetermined function of x, y. Using (26),
[Cr. L —ulu = [Cr,,,, Ly
= Cr, Ly — LCr p!
=(Cr,, — NLp' +u
where the operator L is defined in (5). If we set
u=[Cr,,, L—ulu' = [Cr,,, id, +2ikdx + 3l (28)
then, L;u’ = 0 by the injectivity of | — C7, .
Using (23) and (25), we can write (28) as

u(x,y) _ %%J [T+(k, /) + Tf(k, /)]ei(lfk)xfi(l27k2)yyl(/1X;y) dl dk
(29)
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Inverse Problem (cont.)

(1) We previously showed that the physical scattering kernel
evolves as S(k, 1, t) = S(k, /)e4i(k3_/3)t_

(2) The triangular factors T and R™ evolve in the same way.

(3) Thus the KPI equation (1) has a unique solution u(-, -, t) for
all real t given by (29) at initial time t = 0 which evolves in a
manner determined by the evolution of the scattering data.

Samir Donmazov University of Kentucky
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Space-Time Scattering: Definitions and Notations

Denote the closed unit square [0, 1]x[0, 1] in IR? by [].

Write P[], P=(1/q,1/r),1 < g < o0, 1< r < oo with the
convention that 1/00 = 0.

We use the notation
L(P) = L"(R; LY(R?)), P=(1/q,1/r) €]

For P € [J write P = (x(P), y(P)) for the coordinates.

Samir Donmazov University of Kentucky
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Space-Time Scattering: Definitions

Definition 1
A distribution u € S’'(RxIRY) is called a free wave, if
(i9: +A)u=0 inS'(RxRY).

Definition 2
Let P € [1. Define Lo(P) = {u € L(P) | uis a free wave}.

Lemma 3
Lo((3,0)) = {92 | s e R, p € L(RY)}.

Definition 4

Let u € L(P), P € T. We say that (id; — H(t))u = 0 holds in the weak
sense, if < (id; — H(t)W), u) >= 0 for all ¥ € S(RxIRY).

Samir Donmazov University of Kentucky
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Space-Time Scattering (cont.)

Let V satisfy Assumption 1 and Assumption 2. Let P be V-admissible.

(i) Let u € L(P) satisfy (i — H(t))u = 0 in the weak sense. Then
there exist unique free waves uy € Lo(P) such that

un~ uy at xoo.
Furthermore, the map u_ — uy is given by
up = (L+iGIV)(A+iG° V) tu_.
(ii) Let u— € Lo(P). Then u= (1 —iG_V)u_ € L(P) solves
(io¢ — H(t))u = 0 in the weak sense, and u ~ u_ at —co. An
analogous result holds in the +co case.
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Space-Time Scattering (cont.)

Let V satisfy Assumption 1 and Assumption 2, and let P € T be
V-admissible. Then the following results hold on Lo(P):

Wy =1-iGLV,
S=wtw_.

Samir Donmazov University of Kentucky
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Preliminaries

(1) The Schrodinger equation
S gt = (A VN, PO =g (30)

has the propagator U(t, s) such that the weak solution of
(30) is given by ¥(t) = U(t, s)o.

(2) The family U(t, s) consists of unitary propagators acting on
H = [2(RY) with U(t, t) =1 and U(t,s)U(s, r) = U(t,s) for
all t,s,r € R.

(3) Denote the propagator for the free Schrodinger equation by
Uo(t) = e™®, where the domain D(—A) = H?(RY).

(4) Denote the Banach space of finite regular measures on IRY by

M(R).

Samir Donmazov University of Kentucky
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Existence of Wave Operators

Assumption 1

Let V/(t,x) be a real-valued function such that V € L'(R; M(RY)).

Let V satisfy Assumption 1. Then the following results hold:
(i) For each s € R the limits
Wi(s) = tﬂ)rgoo U(s, t)Uo(t —s)

‘

exist in operator norm in B(L?(IRY)) and are unitary.

(i) The operators Wy (s) extends to bounded operators on LP(IRY),
1 < p < co. Furthermore, Wy.(s) are invertible in B(LP(IR9)), and
we have

sup || Wa(s)lur) < o :gﬂgHWi(S)’lHB(Lpﬁw-

Samir Donmazov University of Kentucky
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Definitions and Notations
Let ¢ € L2(RY) and s € R. Define two operators from L2(IRY) to
[®(R; L2(R9)) as
Fo(s)¢ = Uo(t — s)¢,
M(s)¢ = U(t,s)¢.
For f € C.(R; L2(R?)) the adjoints are

Fo(s)'F = /_Z Uo(s — £)F(£)dt,

[(s)'f = /_ " U(s, Df ().

For f € C.(R; L2(R?)) define maps with values in L*(R; L?(RY))
as ¢
(G2F)(t) = | Uo(t—s)f(s)ds,
+o0
t

(Gaf)(t) = / U(t, s)F(s)ds.

+oo

Samir Donmazov University of Kentucky
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Definitions and Notations (cont.)
It follows that for any s € IR,
G® — GY =To(s)Mo(s)",
G_ — Gy =T(s)I(s)".
Define wave operators on L®(R; L2(IRY)) as
(Wf)(t) = We(t)f(t)
We have the intertwining relation in B(L2(IR9))
U(t, s)Wi(s) = We(t)Uo(t —s), t,s € R.
Using the intertwining relation, we obtain
Gy =W, GowW, 1,
G- =W_G'W_"1,
[(s) = Wi To(s)Wo(s) ™,
M(s) = W_To(s)W_(s)*

Samir Donmazov University of Kentucky
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Definitions and Notations (cont.)

For d =1,
/ !
(011) B F
7"-/ C/
D D’
C T
F B (1,0)
_ (1 T
B = 5,0) B = ,1
_ 1 r_ -
o-(o2) o-(a
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G?, G, are bounded from L(Q) to L(P)

Definition 8
Define the function 77 : []— R by 71(P) = x(P) + 2y(P)/d.

Theorem 9

Assume P € T, Q € T', and t(Q) — (P) =2/d. Then,
GO € B(L(Q), L(P)) and Gs € B(L(Q), L(P)).

Lemma 10
GY is bounded on L(P) to L(P) if either
(i) Pe[BCland P € [B'C'], or
(i) P€ T and P e T' with
x(P)+x(P) =1, x(P) +2y(P)/d — x(P) — 2y(P)/d = 2/d.

Samir Donmazov University of Kentucky
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[o(s), T(s) are bounded from LP(IR?) to L(P)

Theorem 11

Assume 1/2 < 1/p < d/2(d —1) (ford =1 assume1/2 <1/p <1).
Let P € T U[BC| with m(P)=1/p. Then,

Fo(s), T(s) € B(LP(RY), L(P)).

Let q be the conjugate of p and let Q € T' U [B'C'[ with
m(Q)=1/q+2/d. Then

Fo(s),T(s)" € B(L(Q), LI(RY)).

Samir Donmazov University of Kentucky
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More Assumptions and Definitions

Let V be a real-valued function such that V € L(R) for some R € []
satisfying y(R) > 0 and (R) = 2/d.

Definition 12

Let V satisfy Assumption 2 for some R. A pair P, Q € [ is called
V-admissible, if P T, Q € T', and Q = P+ R.

Samir Donmazov
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Lemma 13

Let V satisfy Assumption 1 and Assumption 2. Let P, Q be a
V-admissible pair. Then the following identities hold in B(L(Q), L(P))

G- G_=iG°VG_ =iG_VGO,
G? — Gy =iGIVG, = iG, VGY

Lemma 14

Let V satisfy Assumption 1 and Assumption 2, and let P, Q be a
V-admissible pair. Then 1+ iGQV is invertible in B(L(P)) with inverse
1—iGLV.

Samir Donmazov University of Kentucky
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Connection between Space-Time Scattering and Inverse
Scattering

Consider the Schrédinger equation with a time-dependent potential

P+ Yoo = Vip =0
lim [p(x, t) — e—kt)|= g

t—+oo

(31)

It follows that a solution 1'(x, t) of (31), which is a L*(IR)-valued
function of t, also solves

Pl(x, 1) = et 4 / L vys)ds (32)

Samir Donmazov University of Kentucky
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Theorem 15 (Main Theorem 1)
Assume V € L1(IR?). Let ¢' solve (32) and let

Pt =i Y [ Oiscde ()
n=1
where forn > 1,
—_n n—1 s a . ; o
5160 = ok || (H V(1,5 - c,-)) ded e (34)
j=0

where the t integration goes over —oo < t, 1 < t,_ 2 < ... < tg < o0 and
the & integration goes over (&g, ...,Cn2) € R"L, and & 1 = & and
Cp—1 = k. Then,

fim [ (x, £) — ! (x, £)|= 0

t—+00

i.e., P is the outgoing free wave for 1p’ .

Samir Donmazov University of Kentucky
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Proof of Theorem 15.

Taking the Fourier transform of (32) in x variable
P 0 =20 e Wt [ [ Ii0(s,5 ), 5) iy ds (35)
To solve (35) by iteration, let
F(E 1) = 270 ~ e+ 1 P )
with _ "~
Pn(E 1) = *ﬁe_igzt/_; / e (10, & — Eo)Ph_1(Zo, to) do dto
for n > 1.

Samir Donmazov University of Kentucky
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Proof of Theorem 15 (cont.)
Then, it follows that for n > 1,

~ _jz2 _l I nyg yn—
(36)
where integration goes over (ty, ..., t,—1) with
—00 <ty 1<ty 2<...<tg<tand (&,...En2) € R"T with
671 = (: and C,,,l = k.

Samir Donmazov University of Kentucky
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Proof of Theorem 15 (cont.)

Taking inverse Fourier transform of (36),

Vot = e 4 3 [ O PIag kas (@)

where

Alleaton E27‘[ Jf (H e(E e tJ Gj— 1—§J)> d"td""'¢

(38)

where integration goes over (ty, ..., t,—1) with
—c0<th1<tro<...<tg<tand (&,...,En2) € R"1 with
(:71 = (: and (:,,71 = k.

Samir Donmazov University of Kentucky
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Proof of Theorem 15 (cont.)
Note that

<7
e 915 51 (19,

So, the series on (37) is absolutely and uniformly convergent.
By (34) and (37),
536 = Anle k0] < =15 (IWloasa) ™ [ [|V0s,0)] deas
goes to 0 as t — +o0. Then by (33) and (38)
fim [ (x, £) — !, (x, £) = 0

t—+o00

Samir Donmazov University of Kentucky



[e]e]e]e]o]e] Je]elele]e]e]

Theorem 16 (Main Theorem 2: Explicit Form of Space-Time Scattering)

Let ei(kx=k*t) pe 2 free wave. Then the action of the space-time
scattering operator S on the free wave is given by

§ (eftbk0) = il 4y [ OIS (0, k) o
n=1

where S], are given by (34).

Samir Donmazov University of Kentucky
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Proof of Main Theorem 16.

We have the following series expansion for S,

S=(I+iG)V) (i(-i@ﬂ V)”) =/ + i(icgv —iGoV)(—iGo V)t

n=0 n=1
(39)
Let g(t) = (—iG°V)""1f(t). Observe that

(iGOV — iGOV)g(t) = —i /_ i Us(t — s)V(s)g(s)ds  (40)

while

(—iGO V) L (t)

n—1
_ (_nn-1 .t .
=(—1) ~/{700<tn71§...§t1§t} <j1 Uo(tj—1 tj)v(tj)> f(ty_1)dth_1...dt
(41)

Samir Donmazov University of Kentucky
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Proof of Main Theorem 16 (cont.)

First, writing (40) in Fourier representation, and then substituting Fourier
transform of (41) into (40) with £(t,x) = e/(*¥*t) \e obtain

(iGOV —iGO V) (—iGO V)"~ f(t)

_’) f” (e <He WV, 8 1-6,)) d"¢ d"tdg  (42)

where integration goes over (ty, ..., t,—1) with
—00 < t, 1 <th<...<ty< o and ty = s, and
(571,. . .,C,,,l) € R", with 671 =S C, CO =7 and C,,,l = k.

Samir Donmazov University of Kentucky
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Proof of Main Theorem 16 (cont.)
Thus, substituting (42) into (39), we obtain

5 (et = ook 4 3 [ 5] k) d
n=1

where

Y n—1 2D\ A o
SI(&E k) = E273 H <EJ (8 f;,)v(tj,gjl—gj)> d"t d"¢

where the t integration goes over —o0 < t,_1 < t,—2 < ... <ty < 00 and
the ¢ integration goes over (§o,...,¢n—1) € R", and {_; = ¢ and
Cpho1 = k. O

Samir Donmazov University of Kentucky
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Corollary 17

Let V € L1(R?). By Theorem 16, it follows that
S=1+8

where
o0

S'(k, k+1)= ): (k, k+1) = —i(2m)~ 2/e”(’+2k)'7\7*ﬁ’(/,;7;k) dny

(43)
is the same as (12) up to Ji" being replaced by ji', where S}, are given by
(34)

Samir Donmazov University of Kentucky
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Proof of Corollary 17.

Consider (12) with ji" replaced by i’

Substitute fi'(Z, t; k) = e**t¢/(& + k, t; k) with & = k+1,t = 7 into the
modified (12) using the series expansion of ¢/,

S(k, k+1) = ” (1,1 = D™ 1! (k+T,5; k)e"U+2K1 gl dy  (44)

where 9/ (¢, t; k) are given by (36) and (}(¢, t; k) = 278(& — k)e—i’t,
Finally, substitute ¢! (&, t; k) into (44) with & = k+1,t =1,

S(k,k+1) = S'(k, k+1)

Samir Donmazov University of Kentucky
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Appendix A.1: Existence of Wave Operators on L2
Proof of Theorem 1.(i).

Assumption 1 implies V € LY(R; L(RY)). Let o € L2(R?). Then there
exists a unique propagator U(t, s) such that ¢(t) = U(t, s)io
simultaneously solves the Schrodinger equation and

¥(t) = Uo(t — s)go — i/: Uo(t — T)V(T)p(t)dT
Let o € L2(IR9) and let W(s; t) = U(s, t)Uo(t — s). Then,

< o, W(s; t)po >
t
00> +i/ < o, U(s, T)V(T) Uo(T — )0 > dT

S

So,
W(s; t)po = @o + i / Ui, DV Ui — Sl (45)

S

Samir Donmazov University of Kentucky
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Appendix A.1: Existence of Wave Operators on L2 (cont.)

Proof of Theorem 1.(i) (cont.)
Let f(7,s) = U(s, T) V(T)Up(T — s)@o Then

1(z )2 < TV (Dl Ml ol
Also, let W, (s)po = ¢o + [ f(T,s)dT. Then,

[We(s)pollo < llollo + [Vl 2yl 9oll
Now, we show W, (s) = st - tILm W(s;t).

[W(si )0 = Wi (s)goll, < [ 1F(x,)ld7

<ligoll, [ IV(D)llpdv
—0 as t— o
since V € LL(R; L2(R)Y).

Samir Donmazov University of Kentucky
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Appendix A.1: Existence of Wave Operators on L2 (cont.)
Proof of Theorem 1.(i) (cont.)

Next, we show W.y(s) are unitary.
Let Z(s;t) = Uo(s — t)U(t,s). In B(L?), W(s; t)* = Z(s;t). Similar
estimates can be done to show that

Zi(s) = st - thoo Z(s; t)

Then for ¢ € L2(IR9),
IW.()Z1 (s)p — W(s: £)Z(s: gl
< Wi (s) - W(s: ]1Z1 (s)gll, + IW(s: DII[Z4(5) - Z(s: Dl
—0 as t—o0
Thus,
Wi (s)Zy(s) =st - lim U(s, t)Up(t — s)Uo(s — t)U(t, s)

t—+oo

=1 []

Samir Donmazov University of Kentucky
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Appendix A.2: Existence of Wave Operators on LP

Proof of Theorem 1.(ii).
By (45), for any @ € L2(RY), we have

W(s; t)po = ¢@o + i[: U(s, t)V(T)Us(T — s)podT

= @o + i/st W(s; T)Uo(s — T)V(T)Uo(T — s)podT  (46)

Let V(s;t) = Up(s — t)V(t)Up(t — s) be defined on L1 N L2.
First, we show that V/(s; t) extends to a bounded operator on L!(RY)
such that for each s € R

[ 165 0) | gunyte < ]|V

LY (R; M(R¥))

Samir Donmazov University of Kentucky
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Appendix A.2: Existence of Wave Operators on LP (cont.)

Proof of Theorem 1.(ii) (cont.)
Define a Fourier multiplier operator Up(t) on L}(RRY) by
(Uolt)g)(x) = (2m)~ [ | e P oe)ae

Note that (F1x5¢})(8) = i?’%(’?(g)' Using integration by parts, it follows
that
Uo(—t)xUp(t) = x + 2tp = e*ix2/4t2tpeix2/4t

where p = —iV,.
Then as operators on L?(R?) we have with t # s,

\7(5; t) _ e—ix2/4(t—s) V(t, 2(t - S)p)eix2/4(t—s)
Thus, [|V(s;: )9| ;1 gey = IVt 2(t = 5)P)@l| 11 (re)-

Samir Donmazov University of Kentucky
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Appendix A.2: Existence of Wave Operators on LP (cont.)

Proof of Theorem 1.(ii) (cont.)

Define Fourier multiplier operators V/(t,2(t — s)p) and V(t, p) on
L1(RY), respectively, by

(V(t,2(t = s)p)g)(x) = (21)~¢ /]Rd e V(t,2(t — 5)5)9(8)dE
(V(t, p)p)(x) = (2m1) ¢ /}Rd e V(t,8)9(8)dg (47)

By change of variables, it follows that
1V (2, 2(t = 5)P)@ll 1 rey = V(2 P)@Il 11 (e

Samir Donmazov University of Kentucky
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Appendix A.2: Existence of Wave Operators on LP (cont.)

Proof of Theorem 1.(ii) (cont.)

Assumption 1 implies that

V() = [, e dpi(@) (48)

where yi; is a complex Borel measure for fixed t € R. Using (47) and (48)
with Fubini's theorem, we obtain for ¢ € S(RY)

(V(t,p)9)(x) = [ olx—X)dpe(x)
Thus, using the polar decomposmon of u¢
1V (t, P9l 1 ray < 1@l 2 mey el pagrey

where [[pie|| pqrey = |14¢|(RY) is the total variation of of u; with ||
being a positive Borel measure.

Samir Donmazov University of Kentucky
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Appendix A.2: Existence of Wave Operators on LP (cont.)

Proof of Theorem 1.(ii) (cont.)

Hence, we obtain
H \7(5; t)HB(Ll) = || V(t12(t - S)P)HB(Ll)
= [V (t, P)ll 511y

< |7t
M(R?)

Thus, V(s;t) extends to a bounded operator on L!(IR¥) such that for

each s € R

/_oo ||‘7(5? t)HB(Ll)dt = HV L(R;M(R9))

Samir Donmazov University of Kentucky
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Appendix A.2: Existence of Wave Operators on LP (cont.)

Proof of Theorem 1.(ii) (cont.)
By (46), we have
t ~
W(sit)go = po+i | W(siT)V(s:7)godr (49)

A Dyson series for the solution of (46)
W(s; t)po = o+ Y W(s; t)go

n>1
where the nth term in the series is given by

W) (s; t)go

n
=" / H \7(5; tk)Qodtl - - dty
k=1

s<ty <<ty <t 1

Samir Donmazov University of Kentucky
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Appendix A.2: Existence of Wave Operators on LP (cont.)
Proof of Theorem 1.(ii) (cont.)

Let Wy (s)po = po+ L. W (s)go with

W, () (s)go = i" / H (s; tx)@odty - - - dt,

s<ti<-<t,<oo K=

Then,

W )0

L= T Wl ol
k=1

s<t < <Stp<o0 T

1 O
:,,l[/s HV(S;THB(U) ] [ pol[ 12

<{H Ll(]RM(]R] | @oll 1
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Appendix A.2: Existence of Wave Operators on LP (cont.)
Proof of Theorem 1.(ii) (cont.)
Thus,

Wagolls < e 9

Similarly, we obtain
<V (s; d
|W(s: g0 — Wi (s)goll s < [f 17l 1] I poll.

—0 as t— o

Thus, W.4(s) extend to a bounded operators on L!(IR9).

Similar estimate can be done to show that W4 (s)* also extends to
bounded operators on L1(RY).

By duality, W.(s) extend to bounded operators on L®(IR9).

By interpolation, W4 (s) extend to bounded operators on LP(IR9),
1< p< oo m

Samir Donmazov University of Kentucky
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G?, G. are bounded from L(Q) to L(P) (cont.)
Proof of Lemma 3.(i).
First, we show that if ¢ > 2 and t # 0,
1o(t)ell, < clt|= 902 P ||,
. Let E(t) = e™*/4t Then,
Un(e)piny = (4reit) /2 [ el giy)ay
= (4mit) 92 E(t)t 42 (FE(t)p)(x/2t)

So,
1o(D)gll, = (4m) 2| FE(D)9(-/2t),
= cl¢|~90/2=1/9) HFE )¢l
< |79/ YD g,

Samir Donmazov University of Kentucky
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G?, G. are bounded from L(Q) to L(P) (cont.)

Proof of Lemma 3.(i) (cont.)

Let P=(1/q,1/r) € [BC[and P' = (1/4,1/r") € [B'C'[.
It follows that

|62l < c [ It=sI2 llp(s)] s
Since 1/r' —1/r=1—2/r > 0, by Hardy-Littlewood-Sobolev inequality
HGi(PHL(P) < clloll e
Assume ¢(t) € 12N LY.

|e2ellz= [ [ <) tols —)o(s) > ds o'

t
< 2Re /ioo < ¢(s), Gg(s) > ds < CHQ”H%(P’)

Samir Donmazov University of Kentucky
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G?, G. are bounded from L(Q) to L(P) (cont.)

Proof of Lemma 3.(i) (cont.)

.

P = (1/g,1r )
7
by mkpolodion B =(1/2, 2)

Thus, GY is bounded from any L(P) with P € [B'C’[ to any L(P) with
P € [BC|.

Samir Donmazov University of Kentucky



IST for KPI Space-Tin ering
O 0000000000000 0000000000000 000000000000008000

Gj):, G are bounded from L(Q) to L(P) (cont.)

Proof of Lemma 3.(ii).

_ 1 1
Let P=(1/q,1/r) € T and P=(1/g,1/F) € T with =+ = =1 and
q 4
1 2 1 2 2 1 1 1 1
LS % g -—-=1-d(:—-)andweh
c7+Fd ” d d 0, — — p (2 q)an we have

t
I620ll, << [_le—sI=/22/D|g(s)] 405

Then, by Hardy-Littlewood-Sobolev inequality, G is bounded from L(P)
to L(P).

Samir Donmazov University of Kentucky
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G?, G. are bounded from L(Q) to L(P) (cont.)

Lemma 18 (Interpolation Lemma)

Assume that none of P, P, Q, Q has height zero. If a linear operator
maps L(P) into L(P) and L(Q) into L(Q (continuously), then it maps
L((1 —60)P+6Q) into L((1 —0)P +0Q), where0 < 0 < 1.

Proof of Lemma 3 (cont.)

Consider the map P — P in Lemma 10.(ii) with x(P) + x(P) = 1 and
7t(P) — 7t(P) = 2/d. Extend this map to an affine map A of c/(T’) onto
cl(T). Note that A(B") = B, A(E’') = F and A(F') = E.

Take any pair P € T and P € T’ with 77(P) to L(P). We show that G{

maps L(P) to L(P).

Samir Donmazov University of Kentucky
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G?, G. are bounded from L(Q) to L(P) (cont.)

Proof of Lemma 3 (cont.)

1 B F
£\ Q
B
a4 D "
2ld-1) P
th TC ¢
d-2 R .
== 1 D
2(41)
F B g
1
c L 1 4+ 2,1 4
2 2 2 d
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G?, G. are bounded from L(Q) to L(P) (cont.)

Proof of Lemma 3 (cont.)

G? map L(Q) to L(Q) by (ii) and L(R) to L(R) by (i). If we show that P
divided [QR] at the same ratio as P does [QR], then using the
Interpolation Lemma, we complete the proof of Theorem 2.

Choose t such that P = (1 — t)Q@ + tR. Then,

(P)=(1—t)(Q) + tr(R)
On the other hand, we have 7(Q) = 7(Q) +2/d and
7t(P) = 7t(P) +2/d. Then,
n(P)=mn(P)—2/d =n((1—t)Q +tR)
Since 77 is injective on [@QR], which has slop different from —d/2,
P=(1-t)Q+tR
as required. For P to be below [B’C'[, choose Q close to E’ and repeat
the above arguments. [
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